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mental form: 

(68) da; = 2dB + 2,udc;. 

The definitions of B;, E;, P and B lead to a restatement of Hooke's law as two 
equations: 

(69) 

(70) 

dp =-KdB, 

dB; = 2,u dE; . 

In this form we separate those stresses which produce deformation from those 
which merely alter density so that the two relations can be discussed inde
pendently. It is commonly assumed that when nonelastic behavior occurs, it 
will appear in the deviator relation, not in hydrostatic compression. A not
able exception is the porous solid, but that is not considered here. Following 
common practice we can write the constitutive relations for an elastic-plastic 
solid as: 

(71) 

(72) 

(73) 

dE i = dE~ + dE~ , 
dB . = 2,u dE~ , 

dp =-Kd() , 

where E: and E~ are the elastic and plastic components of the strain deviator, 
respectively. 

For a viscoelastic-plastic material, eqs. (71) and (73) apply as before, 
but (72) is replaced by 

(74) 

where the dot indicates convective derivative with respect to time. 
For a stress-relaxing solid we make the assumption that the plastic strain 

increment, in response to a change in stress, does not take its final value 
immediately. Its change is inhibited by a relaxation mechanism, undefined 
at this point. This process is represented by a relation of the form 

(75) 

The right-hand side of eq. (75) depends upon the amount by which E~ differs 
from its equilibrium value. Combining eqs. (71), (72) and (75) we arrive at 
the relation 

(76) dE;jdt- (1 /2 ,u) dB,jdt = JJ';(B; , p)/2 . 
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Equations (76) and (73) comprise a set of constitutive relations for a stress
relaxing material. Note particularly that the stress deviator, S" is entirely 
supported by the elastic strain, eq. (72). This distinguishes it fundamentally 
from the viscoelastic solid, eq. (74). Equations (71)-(73) for the elastic-plastic 
solid and eqs. (71), (73), and (76) for the elastic-plastic relaxing solid must be 
supplemented by a yield condition, e.g. the von Mises condition, eq. (41a). 
In uniaxial strain the yield condition can be incorporated in F(S;, p) in 
eq. (76). For this geometry eq. (76) can be replaced by a single equation: 

(77) 

where a is the elastic sound speed at density e. 
In Sect. 2 we combined the flow equations, eqs. (1)-(3), under the assump

tion p = p(e), to form a set of characteristic equations, eqs. (25) and (26). 
A similar procedure can be executed in the present case. Combining eqs. (1), (2) 
and (77) yields the characteristic set: 

(78) 

(79) 

0+: dp", + eadu=-Fdt, 

0-: dp",-eadu=-Fdt, 

dx/dt = u+ a, 

dx/dt = u- a, 

along with eq. (77), which applies along the particle path, sometimes called 
the « 00 characteristic I): 

(80) dp", -a2de = - Pdt, dx/dt = u. 

The characteristic equations are less useful for this and oth~r time-dependent 
constitutive relations than for time-independent relations because there are 
now no quantities which remain constant on characteristics. This means that 
wave transitions are no longer limited to specific curves in the (p, u) plane. 
as described in Sect. 3, and that type of analysis loses most of its utility. 
The characteristic equations can still be used in numerical analysis, though 
it is almost always simpler to use a von Nuemann-Richtmyer procedure. 

The principal observable effect of eq. (77) on the shock wave is decay of 
the elastic precursor. The nature of this decay can be seen by an approximate 
analysis. Suppose the precursor is never of such large amplitude that its 
speed of propagation differs significantly from the ambient elastic speed ao• 

Then the jump condition for the precursor becomes (eq. (5»): 

and when the precursor amplitude decays by dp .. , the particle velocity behind 


